- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Ghasemi, Ahmad (2)
-
Malekzadeh, Masoud (2)
-
Pishro-Nik, Hossein (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Non-uniform coverage is a central challenge in UAV-assisted wireless networks, yet most existing methods either assume uniform demand or depend on precise user locations. This letter proposes a distribution-centric trajectory design that uses only statistical demand maps to generate ergodic UAV paths, guaranteeing that time-averaged presence converges to the prescribed spatial distribution. The scheme modulates UAV speed via a time-warping function for smooth transitions between high- and low-density regions, uses continuous angular adjustments, and provides rigorous convergence and complexity analyses. Simulations demonstrate that our method improves coverage fairness and distribution matching by 4.7× and 5.8×, respectively, relative to a deep-reinforcement-learning baseline, while also achieving 1.1× and 1.5× gains over an optimaltransport approach. It reduces outage probability by up to 65 % compared with uniform coverage. Experiments with the Telecom Italia Milano dataset show that the resulting coverage closely matches real urban demand patterns under wind and sensor disturbances.more » « lessFree, publicly-accessible full text available November 5, 2026
-
Malekzadeh, Masoud; Ghasemi, Ahmad; Pishro-Nik, Hossein (, IEEE)Free, publicly-accessible full text available March 19, 2026
An official website of the United States government
